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1. はじめに

ゴム材料は大変形可能で除荷によって元の形
状に回復できるという、エントロピー弾性に基
づく特異な力学特性を示し、幅広い産業分野で
利用されている。その性能は、分子鎖が架橋によ
って網目状に結合したネットワーク構造に大きく
依存するため、架橋密度やネットワークの欠陥に
関する定量的な評価は、材料設計や品質管理にお
いて不可欠である。しかし、架橋したゴムは基本
的に不溶不融であるため適用可能な分析手法が限
られる。最近では固体高分解能 NMR（Nuclear 
Magnetic Resonance）の測定解析技術がかなり
進歩しているが、未だに詳細な構造解析は難しい
場合が多い。従来の架橋密度の評価方法として動
的粘弾性試験や溶媒膨潤試験等があるが、平均的
な架橋密度の情報は得られても架橋の不均一性に
関して定量的な評価が難しいことや、充填剤を含
む複合材では補強効果が強く現れ、ゴムマトリク
スの架橋密度を正確に評価できないことが多い。

このような問題に対して近年 Saalwächter らに
よって開発された多量子コヒーレンス NMR（MQ 
NMR : Multiple-Quantum NMR）法が注目され
ている 1）。この手法は架橋ゴムやゲル等の軟らか
い架橋高分子材料について、非弾性欠陥の割合、
平均的な架橋密度、架橋密度の不均一性（分布）
等のネットワーク構造に関する重要なパラメータ
を定量的に評価できる点で革新的である。

本稿では、多量子コヒーレンス NMR 法（MQ 
NMR 法）を用いたゴム材料の架橋構造の最新解
析事例について紹介する。

2. 多量子コヒーレンス NMR 測定

MQ NMR 法の概要を図 1 に示す。ゴム材料
の多くは水素原子（1H 核）を有し、1H-1H 核
間には磁気双極子相互作用が働いている。この
相互作用は分子鎖の配向秩序に依存し、ガラス
転移温度以上では高速なセグメント運動によっ
て平均化されて消失するが、架橋によって拘束
されると分子鎖に異方性が生じて相互作用が残
る。これを残余双極子相互作用（RDC: Residual 
Dipolar Coupling）とよび、その大きさは拘束点
間の Kuhn セグメント数の逆数に比例し、架橋点
間分子量を直接反映する重要なパラメータであ
る。Saalwächter らは低磁場型の時間領域 NMR

（Time-Domain NMR, TD NMR）を用い、主に
ニ量子遷移に伴うコヒーレンス生成の時間発展を
解析することで RDC を定量化できることを示し
た 1）。この解析によって平均架橋密度だけでなく
その分布や不均一性も評価可能となる。したが
って、ゴムを始めとする様々な架橋高分子のネ
ットワーク構造の評価に有効である。次章では、
ジクミルパーオキサイド（DCP）で過酸化物架
橋したエチレン - プロピレン - ジエン共重合ゴム

（EPDM）を対象とした評価事例を紹介する。

3. 評価事例

3.1　残余双極子相互作用と架橋密度の関係
DCP 量を変えて調製した EPDM シートにつ

いて、MQ NMR 法で測定した RDC と溶媒膨潤
試験（トルエン、37 ℃× 3 days）から求めた架
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橋密度の関係を図 2 に示す。純ゴム配合では、架
橋密度の増加に伴い RDC が線形に増大し、高い
相関が認められた。さらに、オイル配合品も同一
の直線上に位置しており、MQ NMR 法はオイル
添加（非架橋成分）による影響を受けず、ゴムマ
トリクスの架橋密度を正確に評価できることが示
唆される。

〇 純ゴム配合
▲ オイル配合品

図 2　残余双極子相互作用と架橋密度の関係

3.2　充填剤-ゴム間に働く物理的な相互作用の
定量的な評価

ゴム材料では機械強度や耐候性の向上、増量
や特殊機能の付与を目的として、しばしばカーボ
ンブラック（CB）やシリカなどの充填剤が添加

される。このような複合材ではゴム自体の架橋構
造に加えて、充填剤表面でのゴム分子鎖の拘束に
よって生じる物理的な架橋点や、充填剤粒子同士
が形成するネットワーク構造の有無によって力学
物性が大きく変化する。従来、溶媒膨潤試験や動
的粘弾性試験のような物性評価では、充填剤によ
る物理的な補強効果とゴムマトリクスの化学架橋
による影響を切り分けて評価することは困難であ
った。本節では、充填剤添加による影響を受けづ
らい MQ NMR 法と溶媒膨潤試験を組み合わせ
ることで、CB 配合 EPDM における充填剤 - ゴ
ム間の物理的な相互作用の強さを定量的に評価し
た事例を紹介する。

CB 配合および純ゴム配合の EPDM シートに
ついて引張試験と MQ NMR 測定を行った（図 3、
4）。図 3 より、CB 配合品は弾性率 M100 が著し
く増大しており、CB 表面での分子鎖拘束層（バ
ウンドラバー）の形成が示唆される。一方、図
4 より、MQ NMR 法で測定した RDC は純ゴム
配合と同等かやや低下しており、DCP の一部が
CB 表面に吸着されて架橋効率が低下した可能性
を示唆している。

架橋（拘束）点

架橋なし 架橋あり

1H 1H

RDC ≈ 0

1H 1H

RDC ≠ 0
架橋間分子量 大

RDC 小
架橋間分子量 小

RDC 大

高速なセグメント運動によって
磁気双極子相互作用が消失

セグメント運動の抑制によって分子鎖に異
方性が生じ、磁気双極子相互作用が残る

図 1　MQ NMR 法の概要
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図 3　引張弾性率 M100 の CB 濃度依存性

□ 部※

△ 部

※ゴム 当たりの重量

※

図 4　RDC の CB 濃度依存性

次に、MQ NMR 法で求めた RDC と溶媒膨潤
法（トルエン、37 ℃× 3 days）で求めた架橋密
度の関係を図 5 に示す。CB 配合品のプロットは
純ゴム配合の直線関係から水平方向に偏差が認め
られた。これは溶媒膨潤試験において、CB 表面
に強く拘束されたゴム分子鎖の膨潤が制限され、
みかけの架橋密度が増加した影響と推測される。
したがって、この偏差の大きさは充填剤 - ゴム間
の物理的相互作用の強さを反映していると考えら
れる。図 6 に示すように、この偏差の大きさと
弾性率 M100 には相関が認められ、本試料におい

て CB 配合による弾性率の増大は物理的な補強効
果の寄与が大きいと推測される。天然ゴムやスチ
レン - ブタジエンラバーについても同様の現象が
報告されており 2）、様々な複合材料における充填
剤 - ゴム間の相互作用を評価できる新しい手法と
して期待されている。

〇純ゴム配合
■ 配合（ 部）
▲ 配合（ 部）

充填剤との相互作用大

部 部
部

部

図 5　CB 配合品における残余双極子相互作用と架橋密度の関係

3.3　架橋点間分子量の分布、不均一性の評価
架橋構造の不均一性が大きくなると、局所的

な応力集中や劣化、性能のばらつきが生じて製品
トラブルの要因になりうる。MQ NMR 法を用い
ることで RDC の平均値だけでなく分布も解析で
きるため、架橋の不均一性も評価できる。

DCP3.4 部と DCP 6.8 部で架橋した EPDM に
ついて文献 3-5）の方法を用いて求めた RDC の分
布を図 7 に示す。縦軸は RDC の確率密度関数を
表しており、架橋点間分子量の分布を反映してい
ると考えられる。6.8 部架橋品は高 RDC 成分が
増加してピークが広がっており、架橋点間分子量
の小さい高架橋密度成分が増加し、架橋の不均一
性は増大したと推測される。

さらに、同様の解析方法で求めた CB 配合
EPDM シートの RDC 分布を図 8 に示す。CB 配
合品は未配合に比べて低 RDC 成分が増加した。
架橋剤が CB 表面に吸着して架橋効率が落ち、架
橋点間分子量の大きい低架橋密度成分が増加した
と考えられる。
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高架橋（架橋点間分子量小）

低架橋（架橋点間分子量大）

図 7　DCP 量を変えた EPDM シートの RDC 分布

4. おわりに

本稿では、MQ NMR 法を用いて各種 EPDM
の架橋構造を詳細に評価した事例を紹介した。
RDC の測定により、架橋密度やその不均一性を
定量的に把握できることを示し、従来法では困難
であった充填剤 - ゴム間に働く相互作用の解析に
も有効であることが確認された。これらの知見が
ゴム材料の設計や品質管理における課題解決の一
助となることを期待する。
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図 6　引張弾性率 M100 と純ゴム配合直線からの偏差の大きさの関係

図 8　CB 配合品の RDC 分布
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