総合解析

**Analysis of Thermal Deteriorated CFRP** 

# エポキシ系CFRP積層体の劣化解析

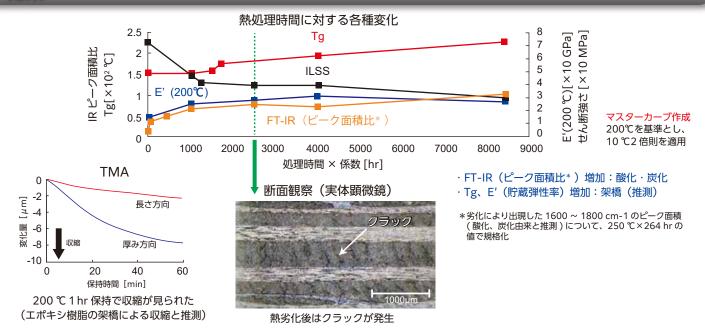
軽量で高い物性値を有する材料として、エポキシ系 CFRP (積層品)が広く用いられている。部品として長期に用いる場合、その劣化挙動の解析は重要であると考えられる。本資料では、熱劣化 (Air下) させたエポキシ系 CFRP について、多様な手法を用いて劣化挙動を解析した例を紹介する。

### ▶ 熱劣化促進試験条件

Test Condition

| サンプル          | エポキシ系 CFRP (CF70% /エポキシ 30%) |                   |        |
|---------------|------------------------------|-------------------|--------|
| 処理温度(Air 雰囲気) | 200 ℃                        | 230 ℃             | 250 ℃  |
| 処理時間          | 48 ~ 408 hr                  | 126 $\sim$ 500 hr | 264 hr |

## ▶ 分析物性試験


Analysis and Physical Property Test

| 評価項目 | 装置        |
|------|-----------|
| 樹脂劣化 | FT-IR     |
| 形状変化 | 実体顕微鏡、SEM |
| 寸法変化 | TMA       |

| 評価項目    | 装置            |  |
|---------|---------------|--|
| 架橋、硬化度  | 粘弾性(Tg、E')    |  |
| 層間せん断強度 | ILSS(層間せん断試験) |  |

## ●結果

Results



#### 熱劣化促進試験により

- ・酸化や架橋(炭化)と推測されるエポキシ樹脂の構造変化(ミクロな構造の変化)
- ・架橋による収縮由来と推測されるクラック(マクロな構造の変化)が発生

#### 推定されるせん断強度低下要因

- ・ミクロな構造の変化によるエポキシ樹脂の強度低下、界面や層間の密着性低下
- ・マクロな構造の変化によるクラックを起点とした層間剥離の促進