溶融物性評価

プラスチックは通常、溶融状態で成形加工され、その溶融状態における最も基本的な特性が溶融物性である。キャピラリーレオメーターでは、高剪断速度での粘度測定が可能であり、実際の成形時に近い状態での粘度、剪断応力などのデータが取得できる。また、得られた値にラビノビッチ・バーグレー補正*を適用することで、より正確な粘度データを得ることも可能である。

MFR(Melt Mass Flow Rate)、MVR(Melt Volume Flow Rate) は溶融樹脂の流動性を数値化したものであり、成形性を評価する指標になる。また、MFRとMVRを同時測定することにより、溶融密度を算出することも可能である。

以下に種々の溶融物性評価法の概要を示す。

*ラビノビッチ・バーグレー補正: 非ニュートン流体の剪断応力補正

▶ 溶融物性評価法一覧

評価法	フローカーブ	スウェル比	溶融張力	MFR, MVR
装置	キャピラリーレオメータ			メルトインデクサ
温度範囲	60~400 ℃			100~400 ℃
関連規格	JIS K 7199 ISO 11443			JIS K 7210 ISO 1133 ASTM D1238
必要サンプル量 (1 測定あたり)	20 g 以上	15g以上	20g以上	20 g 以上
特徴	・各剪断速度毎の 剪断応力を測定する。 ・剪断応力値から粘度を 求めてグラフ化する。	・各速度毎のストランド 直径を測定する。・ストランドとノズルの 直径比をスウェル比と して算出する。	・溶融樹脂を任意の引取 速度で引取る際に発生 する張力を測定する。	・指定の温度、荷重で 押出される樹脂の質量、 体積を測定する。 ・溶融密度=MFR/MVR
対応する成形法	射出成形	押出成形	インフレーション成形 ブロー成形	成形全般

^{*}詳細な試験条件については別途相談ください。

▶ 測定事例

試料:ポリエチレン

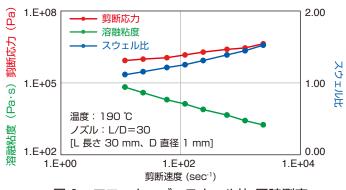
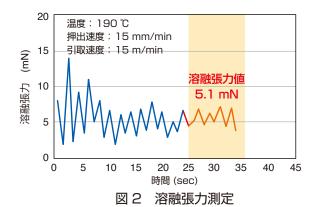



図 1 フローカーブ・スウェル比 同時測定

