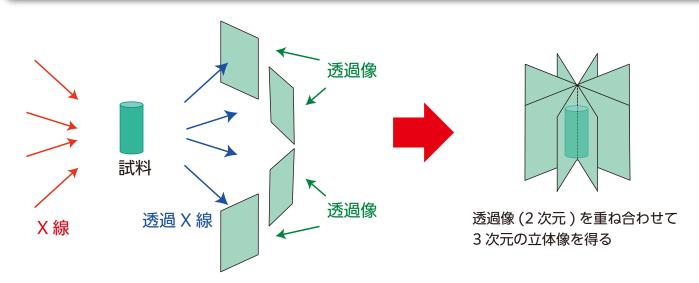
構造解析

MITSUI CHEMICAL ANALYSIS & CONSULTING SERVICE. IN

非破壊3次元内部観察

-X線CT-


X線CTはX線の特徴(※1)を利用して、試料にX線を照射し得られるX線透過像(※2)様々な方向(角度)から撮影し、コンピュータで3次元に再構成して、立体像を作製し、立体像を基に「見てみたい面(任意の切り口)」でのX線透過像を得る方法。

試料の内部構造を非破壊で3次元的に深さ方向まで評価できる。

電子密度差がコントラストに反映されるので、繊維強化樹脂のフィラー分散状態、電池の積層状態、 および成形品内ボイドの非破壊解析が可能である。

- (※1) X 線は波長 0.001nm ~ 10nm の電磁波であり、試料中の物質に吸収されながら試料中を透過する。
- (※2) 試料中に複数の物質がある場合、各々の物質の密度が異なると、X 線吸収係数が異なるため、 各々の物質の密度差が X 線像のコントラストに反映される。

● 測定概要

▼ X線CT分析の分解能と対象サイズ

	高分解能仕様	大型試料仕様
検体サイズ	約 4mm立方	約 50mm立方
測定エリアサイズ	最大で 1mm立方程度 (ピクセル分解能 4 μ m 時)	最大で 20mm立方程度 (ピクセル分解能 100 μ m 時)
ピクセル分解能	0.27 ~ 4 μ m/voxel	5 ~ 144 μ m/voxel
適用できる例	・繊維強化樹脂のフィラー分散 ・プラスチック成形品の微小ボイド	・プラスチック成形品の内部構造、ボイド ・電池の内部構造